

Cyclotron and Radioisotope center, Tohoku University
Department of Physics, Tohoku University*
Department of Physics, Kyushu University**
Center for Nuclear Science (CNS), University of Tokyo***
Faculty of Technology, Nishinippon Institute of Technology****

The g-factor of the 27$^-$ isomer state of 152Dy has been measured using the Time-Integral Perturbed Angular Distribution (TIPAD) method. The high-spin states of 152Dy have been populated by 141Pr(16O,p4n)152Dy reaction at $E = 115$ MeV from the new AVF cyclotron at CYRIC. An enriched 141Pr target of 6 mg/cm2 thickness was placed in an external magnetic field (B_{ext}) of 20.3 kG applied perpendicularly to the beam-detector plane. Figure 1 shows the time-integral perturbed angular distributions of γ-rays emitted from the 27$^-$ state.

In the case of paramagnetic materials, such as rare earth elements, the effective magnetic field at the nucleus (B_{eff}) is obtained from the relation $B_{\text{eff}} = \beta B_{\text{ext}}$, where β is called the paramagnetic correction factor, and must be measured independently to obtain the g-factor.

The paramagnetic factor of Dy ions in Pr target has been determined to be 4.2(5) by the Time-Differential Perturbed Angular Distribution (TDPAD) measurement of the 21$^-$ state of 152Dy. Because the g-factor of this 21$^-$ isomer state has been known to be +0.55(6)1, we could deduce the effective magnetic field in case of this experimental condition by measuring the Larmor frequency of the nuclear spin precession of this state. Fortunately since both of high-spin isomer states of 152Dy have been populated simultaneously. Figure 2 shows a TDPAD spectrum of this state and the effective magnetic field has been obtained to be 8.50(95) T, which corresponds to $\beta = 4.2$.

As a result, the g-factor of the 27^{-} isomer state of 152Dy has been obtained to be $+0.09(5)$ and has been found to be much smaller than the expected value of $+0.39$. It has been deduced from a fully aligned configuration of $\pi (h_{11/2}^2) \otimes \nu (f_{7/2}^2 h_{9/2}^1 i_{13/2})^2$, which is expected as an yrast state as a result of Deformed Independent Particle Model (DIPM)\(^3\) calculation. As seen in Table 1, present data suggest the configuration of $\pi (h_{11/2} d_{3/2}) \otimes \nu (i_{13/2}^2 h_{9/2} f_{7/2})$, however the excitation energy of this configurations has been expected to be more than 2 MeV higher than that of the yrast state in the DIPM calculation. Systematic measurements in the high-spin isomer states of Dy isotope are needed to understand this contradiction, so we are planning to measure the g-factor of the high-spin state in other Dy isotopes.

References

Table 1. Expected g-factors for possible configurations.

<table>
<thead>
<tr>
<th>configuration</th>
<th>g (expected)</th>
<th>Ex (MeV)</th>
<th>deformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi (h_{11/2}^2) \otimes \nu (f_{7/2}^2 h_{9/2}^1 i_{13/2})$</td>
<td>$+0.36$ (5)</td>
<td>6.79</td>
<td>-0.097</td>
</tr>
<tr>
<td>$\pi (h_{11/2} d_{3/2}) \otimes \nu (i_{13/2}^2 h_{9/2} f_{7/2})$</td>
<td>$+0.15$ (5)</td>
<td>9.02</td>
<td>-0.091</td>
</tr>
</tbody>
</table>
Figure 1. A TIPAD spectrum of 220.6 keV γ-ray emitted from 27$^+$ high-spin isomer state of 152Dy

Figure 2. A TDPAD spectrum of 262.4 keV γ-ray emitted from 21$^-$ high-spin isomer state of 152Dy