I. 1. Search for Gamow-Teller Strengths in 14O via the (p,n) Reaction

Okamura H., Terakawa A., Suzuki H., Sugimoto N., Shinozaki H., and Hasegawa T.

CYRIC, Tohoku University

The old and well-known feature of the mass $A=14$ system is the anomalous hindrance of the transition between the ground state of 14N ($J^p=1^+, T=0$) and the ground states of 14O and 14C ($J^p=0^+, T=1$). Although the quantum numbers involved would permit a Gamow-Teller decay, the log(ft) values are as large as 9.0 and 7.3 for 14C and 14O, respectively, allowing the widely used 14C dating in archaeological studies. A number of theoretical works have been made, but it is interesting to note that none of the widely used empirical effective p- or psd-shell model interactions can explain this famous suppression. Recently it was suggested that the suppression can be explained if a tensor component of the residual interaction is considered in a large model space$^1)$. It was also suggested that the main part of the Gamow-Teller strength should be found at higher excitation energies, which, however, has not been established due to the lack of experimental data. Aiming at pursuing this problem, the 14N(p,n)14O reaction has been measured at $E_p=70$ MeV and $\theta_n=0^\circ$−60° with small contaminants by using a gas target. 14N gas was contained in a cell having 6-μm thick Havar windows at a pressure of 1 atm. The target thickness was 5 cm, which gives an energy loss comparable to other sources of energy spread. Owing to the newly installed beam buncher, the intensity of 20−90 nA was obtained after beam pulse selection by 1/8. A typical excitation energy spectrum is shown in Fig. 1. The $l=0$ Gamow-Teller strength will be extracted from the angular dependence of the spectra by using the multipole-decomposition analysis.

References

Figure 1. Typical excitation energy spectrum of the $^{14}\text{N}(p,n)^{14}\text{O}$ reaction at $E_p=70\text{ MeV}$ and $\theta_n=0^\circ$, after subtracting the background from the gas-cell window.