

Department of physics, Tohoku University, Department of Nuclear Engineering, Tohoku University*, Cyclotron and Radioisotope Center, Tohoku University**.

Recently, the secondary beams of 15O were produced using the reaction (15N, 15O) on the H$_2$ gas target on a heavy ions scattering beam course in the Cyclotron and Radioisotope Center. The low-energy 15O beams of about 60 and 70 MeV were produced utilizing the inversion kinematics. A test of the measurement for the elastic scattering using this beam have been performed on 28Si target.

Properties of nuclear structure and reaction mechanism in relation to different interactions between nuclei have so far been studied via stable nucleus-nucleus collisions. However, it is significant to extend the studies to the nuclear scattering and reactions using radioactive beams. In particular, low-energy radioactive beams provide a great scope for studies of the properties which enhance the effect of strong absorption, fusion, isospin-dependence, coupled channels transfer reaction so on. Therefore, this test is significant for future projects of measurements of elastic cross sections using radioactive beams.

The 15O beam produced at an incident energy of 61.7 MeV was elastically scattered by the 28Si target. Beam intensity was about 10^3 particles / sec on the target and the size of beam on the target was about 6×8 mm2 and was not collimated. The target was a self-supporting natural Si metal, 0.5 mg / cm2 in thickness which was prepared by an evaporation. A detection counter system consists of two 25 μm totally depleted surface barrier type silicon detectors and a 240 μm position sensitive silicon detector. Two ΔE detectors were placed in parallel with the position sensitive detector, i.e., this counter has two telescope ΔE1 - E and ΔE2 - E. Each telescope was mounted by a tantalum plate with three slits in front of the E detectors. Therefore, the spectra can be measured at six angles at the same time. The each slit aperture of detector system is 2 mm wide and 8 mm high.

Typical spectra of 15O elastically scattered from 28Si are shown in Fig. 1. The measured angle was 4.0° in the laboratory system. The overall resolution, including a beam emittance and fluctuation of energy loss in the target, was about 1 MeV. The differential cross sections at 10 angles were measured in a range of $\theta_{lab} = 4.0 - 19.1^\circ$. These results are plotted in Fig.
2. A solid curve indicates the calculated Rutherford scattering cross sections. Diffraction patterns in the angular distribution could not be observed because of the poor statistics, however, a gross angular dependence of the differential cross sections reproduced the Coulomb scattering cross sections.

A quality and intensity of the secondary beam are much improving for the elastic scattering experiments.

Reference

Fig. 1. Energy spectra of the elastically scattered 15O at $\theta_{\text{lab}} = 4.0^\circ$ in the system 15O + 28Si.

Fig. 2. Angular distribution of the elastically scattered 15O from 28Si. A solid curve shows Coulomb scattering cross sections.