III. 3 Synthesis of C-11 Tamoxifen and its Biodistribution

Department of Radiology, Tohoku University School of Medicine
Cyclotron and Radioisotope Center, Tohoku University*
Second Department of Surgery, Tohoku University School of Medicine**
Department of Radiology, The Research Institute for Tuberculosis and Cancer, Tohoku University***

In recent years there has been a great deal of interest in the development of estrogen-receptor-binding radiopharmaceuticals useful for the imaging of estrogen target tissue.\(^1\) Such radiopharmaceuticals could be useful in the scintigraphic detection of breast tumors and their metastases and in the prediction of the response of breast cancer to hormonal therapy.\(^2\) Tamoxifen (1), a non-steroid antiestrogen, competes with estradiol for the high affinity cytoplasmic estrogen receptor and binds to this receptor.\(^3\) Therefore, we considered it to be of interest to label the tamoxifen with positron emitter\(^4\) for the detection of a breast tumor. The present paper describes the synthesis of C-11 labeled tamoxifen by the reaction of nortamoxifen (2) with \(^{11}\)CH\(_3\)I and the preliminary results of biodistribution in female rats.

Materials and Methods

Tamoxifen citrate was obtained as a gift from ICI Ltd.. The preparation of nortamoxifen was carried out by carboxylation of tamoxifen, followed by reductive cleavage with zinc dust\(^5\) (Fig. 1). High performance liquid chromatography (HPLC) was undertaken using \(\mu\)-Porasil column. The column was eluted with CHCl\(_3\)-MeOH (9:1, v/v), and the eluate was monitored with a UV detector (254 nm) and a sodium iodide scintillation detector.

Preparation of 2,2,2-Trichlorocarboxyloxy-nortamoxifen (3).

A stirred mixture of tamoxifen (0.98 g), 2,2,2-trichloroethyl chloroformate (3 ml), anhydrous K\(_2\)CO\(_3\) (50 mg) and benzene (60 ml) was refluxed on a oil-bath for 20 hr. After cooling, the reaction mixture was diluted with water and extracted with benzene. The extract was dried and evaporated and the residue was chromatographed on silica gel using CHCl\(_3\) as eluant. The eluate (100 ml) was evaporated to give the carboxyloxy-nortamoxifen (3) (1.05 g, 75.8% yield) as colorless needleless, mp 111-112\(^\circ\) (from ether-hexane) (Found: C, 62.7; H, 5.20; N, 2.52; C\(_{28}\)H\(_{28}\)NO\(_3\)Cl\(_3\) requires C, 63.1; H, 5.20; N, 2.60%). \(^1\)H-NMR \(\delta\) (CDCl\(_3\)) : 0.90 (3H, t, J=7Hz, -CH\(_2\)CH\(_3\)), 2.46 (2H, quartet, J=7Hz, -CH\(_2\)CH\(_3\)), 3.06 (3H, s, -NCH\(_3\)), 3.63 (2H, t, J=5Hz, -OCH\(_2\)CH\(_2\)N-), 4.03 (2H, t, J=5Hz, -OCH\(_2\)CH\(_2\)N-), 4.70 (2H, s, -OCH\(_2\)CCl\(_3\)), 6.4-7.3 (14H, m, Ar-H). IR\(_{\text{max}}\) (CHCl\(_3\)) cm\(^{-1}\) : 1705 (C=O).

Preparation of Nortamoxifen (2). To a solution of carboxyloxy-nortamoxifen (3) (700 mg) in acetic acid (50 ml) was added zinc dust (3 g) by portions with
stirring and refluxing in a oil-bath for 1.5 hr, and then filtered. The filtrate was evaporated, basified with ammonia and extracted with CHCl₃. The extract was dried and evaporated. The hydrochloride (411 mg, 78.7% yield afforded colorless crystals, mp 214-216 ° (from methanol-ether) (Found: C, 75.9; H, 7.11; N, 3.42; C₂₆H₂₇NO·HCl requires C, 76.2; H, 7.16; N, 3.55%), ¹H-NMR (CDCl₃) (free base): 0.93 (3H, t, J=7Hz, -CH₂CH₃), 1.80 (1H, s, -NH), 2.46 (3H, s, -NCH₃), 2.47 (2H, quartet, J=7Hz, -CH₂CH₂), 2.88 (2H, t, J=5Hz, -OCH₂CH₂N-), 3.95 (2H, t, J=5Hz, -OCH₂CH₂N-), 6.4-7.2 (14H, m, Ar-H). Mass (m/e): 357 (M⁺), 300, 58, 44 (base peak).

Preparation of ¹¹CH₃I. The ¹¹C was produced by the nuclear reaction ¹⁴N (p,α)¹¹C using the Tohoku University Cyclotron and obtained as ¹¹CO₂. Carbon-11 labeled CH₃I was prepared from ¹¹CO₂ according to the following reaction scheme and supplied by the automated ¹ⁱCH₃I synthesis system.⁶) The total time required for the synthesis of ¹¹CH₃I from ¹¹CO₂ was within 25 min.

\[
\begin{align*}
¹¹CO₂ & \xrightarrow{LiAlH₄/THF} -20°C & THF & \xrightarrow{H₂O} -20°C & ¹¹CH₃OH & \xrightarrow{HI} 100°C & ¹¹CH₃I
\end{align*}
\]

Synthesis of ¹¹C-Tamoxifen. The ¹¹CH₃I prepared was introduced (flow rate: 200 ml/min; total time: 5-10 min) into nortamoxifen (from 5 mg of the corresponding hydrochloride) dissolved in acetone (1 ml) at -78°C (dry ice-acetone). The reaction mixture was heated at 50-60°C for 10 min with stirring. After solvent was purged with He gas, the residue was dissolved in CHCl₃ (ca. 700μl) and the solution was applied onto the HPLC-column. The eluate of labeled tamoxifen was collected and evaporated to dryness. To the residue was added 0.01 N ethanolic HCl (4 ml), then the solvent was evaporated to dryness. The hydrochloride of tamoxifen was dissolved in H₂O (ca. 5 ml) by sonication and sterilized through a membrane filter (0.22 μm). The resulting pH of the solution showed between 5 and 6.

Animal Experiments. Immature female Sprague-Dawley rats (6 weeks) were injected intravenously with the ¹¹C-tamoxifen hydrochloride. At the indicated times, rats were killed by cervical dislocation and tissues were removed, assayed for radioactivity and weighted. The uptake of activity was expressed as per cent of injected dose per g of wet tissue.

Results and Discussion

The reaction product, obtained in 70-80% radiochemical yield, consisted of a mixture of labeled tamoxifen and nortamoxifen. It is important to separate tamoxifen completely from nortamoxifen, since this compound also binds to the estrogen receptor.⁷) The baseline separation between the two compounds could be achieved using a high efficient normal phase HPLC column (Fig. 2). Suboptimal or reverse phase performance (data not shown) that led to tailing of peaks caused contamination of tamoxifen by nortamoxifen. The fraction corresponding to tamoxifen had no other radioactive peaks (Fig. 3) and no impurities were
detectable by ultraviolet absorbance. The mass spectrum of this fraction showed
parent ion at m/e 371, and abundant ions at m/e 72 and 58, which supported
this structure (1). These results indicate that labeled tamoxifen is
radiochemically and chemically pure (>99.9%). This compound was easily
converted to the corresponding hydrochloride suitable for IV injection by the
addition of 0.01 N ethanolic HCl. The time required for the synthesis of C-11
tamoxifen hydrochloride was within 40 min from the introducing of 11CH$_3$I. The
total activity and specific activity at the time of use were about 20 mCi and
30 mCi/µmole, respectively.

The data in Fig. 4 show the average tissue concentration of radioactivity
following intravenous injection of 4.8 nmole C-11 tamoxifen hydrochloride.
Uptake in the uterus was higher than that in the blood. High uptake of radio-
activity was also observed in the nontarget tissues (liver, adrenal, kidney and
heart). The biochemical characteristics of this ligand to the estrogen-target
tissues are now under investigation.

Acknowledgment

This work was partially supported by a Grant-in-Aid for Scientific Research
No. 58015010, Ministry of Education, Science and Culture, Japan. We are
grateful to ICI Ltd. for a gift of tamoxifen citrate.

References

3) Patterson J. and Battersby L., Cancer Treatment Rev. 5 (1978) 131.
4) NÅgren K., Sjöberg S. et al., Technical Report, Institute of Chemistry
 Univ. of Uppsala Sweden, July 1982.
8) Fromson J. M. et al., Xenobiotica 3 (1973) 693.
Fig. 1. Synthesis of C-11 tamoxifen.

Fig. 2. High performance Liquid Chromatographic Separation of C-11 Tamoxifen from Nortamoxifen.
Bar represents fraction collected.
Analytical conditions
- column: µ-Porasil, eluant: CHCl₃-MeOH (9:1, v/v),
- flow rate: 2 ml/min, detector: UV at 254 nm
Fig. 3. Radiochemical Analysis of 11C-Tamoxifen with HPLC.
Analytical conditions were the same as described in Fig. 2.

Fig. 4. Tissue concentration of radioactivity following intravenous injection of C-11 tamoxifen hydrochloride.