I. 7 Electron Neutrino Mass from the Electron Capture of 163Ho

National Laboratory for High Energy Physics
University of Madras*
Stanford University**
Osaka University***
Tokyo Institute of Technology****
Tohoku University*****
University of Tsukuba******

For the study of electron neutrino mass m_{ν_e} the MX-ray from the electron capture decay of 163Ho was measured.\(^1\) 163Ho was produced by the 164Dy(p,2n) reaction by a large-current internal irradiation of an enriched 164Dy target inside the CYRIC cyclotron.\(^2\)\(^-\)\(^4\) 163Ho was chemically separated and electroplated to give several sources of 163Ho for MX-ray measurement. The number of 163Ho atoms in the source was determined by the PIXE method using a proton beam from the CYRIC cyclotron. MX-rays accompanying electron capture of 163Ho were measured with a Si(Li) low-energy photon spectrometers. Fig. 1 shows the gamma-ray spectrum of one of the 163Ho sources measured with a Ge(Li) detector, indicating a high radiochemical purity except a very small contamination of 88Y.

From the MX-ray measurement the total number of emitted MX-rays per 163Ho atom was obtained to be $(4.7\pm1.5)\times10^{-15}$ sec\(^{-1}\) and the number of 163Ho atoms was determined by the PIXE measurement to be $(0.88\pm0.26)\times10^{16}$ for source No. 3 which is the strongest. Using the average M fluorescence yield of 98% we obtained the partial M-capture half life of 163Ho to be $T_{1/2}^{M} = (4.5\pm1.5)\times10^{4}$ y. Using these values together with the log ft value of 163Ho and a theoretical pairing reduction factor of the nuclear matrix element of 163Ho to 163Dy electron capture, we obtain a relation between m_{ν_e} and the electron-capture Q value as shown in Fig. 2. If we use the experimental value of $Q = 2.3 \pm 1.0$ keV measured by the CERN group\(^5\), we obtain an upper limit of m_{ν_e} of 1.25 keV/c\(^2\). On the other hand if we assume $m_{\nu_e} = 0$ we can deduce $Q = 2.45 \pm 0.08$ keV and a total half life of 163Ho of $T_{1/2} = (6\pm2)\times10^{3}$ y.

Improvement of the experimental values obtained here is in progress.

References
3) Proc. 4th Workshop on the Mass of the Electron Neutrino, held at KEK, March 27, 1982; KEK Rept. KEK 82-8, Sept. 1982 E.

Fig. 1. Gamma-ray spectrum of one of the 163Ho sources

Fig. 2. Relation of m_{ν_e} and Q. The shaded region corresponds to the experimental value with error obtained by the present study.