III. 17 Pancreas Imaging Study with 13N-Glutamic Acid Using Positron Computer Tomography

Department of Radiology and Nuclear Medicine, Research Insitute for Tuberculosis and Cancer, Tohoku University
Cyclotron and Radioisotope Center, Tohoku University*

INTRODUCTION

Currently, L-(75Se)-Selenomethionine is used as an agent for the detection of pancreatic carcinoma, with Tc-99m sulfur colloid injected in addition in order to permit the subtraction of the interfering liver back ground from selenomethionine. But there are two serious problem about this technique, one is rather large radiation doses to the patient due to biologically and physically long half-life, 70 days and 120 days respectively. And significant number of false-positive and false-negative make routine diagnosis difficult.

Recent advances in pancreatic imaging by transmission computerized tomography have been promising, but development of new radiopharmaceuticals for the diagnosis of pancreas has been slow. Several labelled amino acid derivatives that would accumulate in the pancreas have been studied in animal experiments and in patients with pancreas disease. 1-4) But these are yet far from to describe the standard effective technique.

The purpose of this study is to describe the accumulation of 13N-glutamic acid to the pancreas, and its use for the imaging study of pancreas using positron emission computerized tomography.

MATERIALS AND METHODS

1) Synthesis of 13N-glutamic acid

The cyclotron production of 13N-ammonia and its subsequent use in the enzymatic conversion to glutamic acid by immobilizing glutamate dehydrogenase on an Sepharose support was described in detail elsewhere by K. Ishiwata et al..

2) Tissue distribution studies

Tissue distribution studies with 13N-glutamic acid were carried out with male Donryu rats (weighed from 120g to 140g) and male Golden hamsters (weighed from 110g to 130g). Each experimental group consisted of six rats and four or five hamsters. Animals were fasted for 24hr and a hundred and fifty micro Ci of 13N-glutamic acid was injected through the tail vein of rat and jugular vein of hamster. The animals were killed by cervical dislocation at 5, 10, 20 and 30
min. after injection. Organs and tissue samples were excised, blotted to remove adhering blood, counted in a NaI(Tl) well scintillation counter and weighed.
Per cent administrated dose per tissue gram (PAD) was calculated.
An evaluation was made of the effects of various feeding protocols on the tissue activity obtained with 13N-glutamic acid in the Donyu rats. The feeding protocols used were: (a) animal given standard laboratory chow ad. libitum. (24% protein, 5.1% fat, 54.5% carbohydrate). (b) animal fasted for 24hr. (c) animal fasted for 24hr followed by ingestion of high protein food (60.0% protein, 6.5% fat, 9.2% carbohydrate) for an hour before experiment. (d) animal fasted for 24hr followed by ingestion of high fat food (21.0% protein, 20.2% fat, 35.9% carbohydrate) for an hour before experiment. Water was given to each animal ad. libitum. Each laboratory chow was purchased from Oriental Yeast Co. Ltd. Tokyo.

3) Imaging studies

Miniature-pig-Gettingen 6 month old male 23kg (obtained from Clea Japan Inc.) was used for imaging studies. Pig was fasted for 24hr and anesthetized with intravenous sodium pentobarbital before experiment. Pancreas images were obtained 15 to 25 min after injection using positron emission computed tomography (ECAT-II, Ortec USA). The resolution of the system in these study was 15mm (full width half maximum) using medium resolution shadow shield and the medium resolution filter function. Scan time was 4 min per image accumulating a total of 200 to 400 K counts. Emission scans were corrected for decay and attenuation. Transmission scan with a 1.2 mCi Ge/Ga ring source performed before emission scan permit the computation of the attenuation correction.

4) X-ray CT scan

X-ray computed tomography scanning was carried out (CT scan) to obtain the anatomical reference for ECAT image. Delta 50-FS-II (Ohio Nuclear) CT scanner was used. Scanning width was 13mm. Scan time was 18 seconds. Scan was carried out under the same protocol as ECAT scan.

RESULTS

1) Tissue distribution studies

Tissue distribution of Nitrogen-13-glutamic acid showed four patterns of time activity course (fig. 1). Blood and brain were the lowest accumulation group. Myocardium and spleen were second low but gradually increasing accumulation. Liver and kidney were high accumulation and gradual excretion pattern. Early high accumulation was observed in the kidney. High uptakes of 13N-glutamic acid by pancreas and salivary gland were observed. Their uptakes increased gradually from 5 min to 30 min after injection. Pancreas to liver ratio also increased from 5 min; 1.25 to 30 min; 2.50. But in view of the half-life of Nitrogen-13, 20 min after injection will perhaps be the best time for imaging study with ECAT.
The tissue distribution of 13N-glutamic acid at 20 min after injection was compared from hamster and rat to test for any possible species differences and thus to indicated the potential of 13N-glutamic acid as a pancreas imaging agent in man (fig. 2). Both animals showed good pancreas uptake, pancreas to liver ratio was 1.82 for hamster and 1.92 for rat.

2) Effects of various feeding protocols

Table 1 showed the effects of various feeding protocols on the distribution of 13N-glutamic acid in the rats tissues. Group C, fasted for 24hr followed by ingestion of high protein good showed both highest pancreas uptake and pancreas to liver ratio; 2.15, and also highest uptake of submandibular gland. Group A, free feeding, showed lowest uptake of pancreas, liver and submandibular gland. Highest brain uptake was observed in fasting group B.

3) Results of imaging studies and CT scan

Figure 3-a showed the ECAT image of miniature-pig with 13G-glutamic acid. Figure 3-b showed the CT scan image at the same level and the same position. White arrow indicate the duodenal portion of pancreas which was clearly demonstrated as highest activity. kidneys and left lobe of liver were also showed in the same level image.

DISCUSSION

13N-glutamic acid has been studied for the imaging of human heart, 5 and osteogenic sarcoma. 6 But pancreas imaging with 13N-glutamic acid and its basic study have not yet reported. In this report we described high accumulation of 13N-glutamic acid in the pancreas. Time activity curve of tissue distribution indicate that glutamic acid was selectively taken into secretory gland, pancreas and salivary gland. Various feeding protocols strongly affected its uptake. These seemed to be closely related to the amino acids demand for portein synthesis after the fasting and feeding.

Per cent administrated dose value of pancreas with 13N-glutamic acid was almost equal to that with selenomethionine. But pancreas accumulation and pancreas to liver ratio characteristically increased accoding to the time after injection. Nitrogen-13 has very short physical half-life, ten minutes. It makes high dose administration possible without increased radiation dose. Combination of high dose administration and appropriate feeding protocol and suitable time after injection will make the pancreas image with 13N-glutamic acid clear in future human study.

Further assessment of diagnostic value of 13N-glutamic acid for the pancreas cancer, is now undertaken.
Acknowledgment

We would like to thank Mr. Tachio Sato, Miss Kumiko Ohgai and Mrs. Roko Kubota for their excellent technical assistances.

We would like to thank M. Fujioka, H. Orihara, K. Ihsii and K. Sera for the use of Tohoku University Cyclotron.

This work was supported by a Grant-in-Aid for Scientific Research No.00544052, Ministry of Education, Science and Culture Japan.

References

Table 1. Effects of various feeding protocols on the distribution of 13N-glutamic acids in the rat tissues. (N=6 Mean ± S.D.)

<table>
<thead>
<tr>
<th>% Admin.Dose/g</th>
<th>A free feeding</th>
<th>B fasted for 24hr</th>
<th>C fas.+high prot.</th>
<th>D fas.+high fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>0.158±0.051</td>
<td>0.170±0.015</td>
<td>0.247±0.115</td>
<td>0.122±0.088</td>
</tr>
<tr>
<td>Myocardium</td>
<td>0.632±0.0279</td>
<td>0.434±0.147</td>
<td>0.549±0.135</td>
<td>0.501±0.238</td>
</tr>
<tr>
<td>Liver</td>
<td>0.802±0.469</td>
<td>1.240±0.573</td>
<td>1.259±0.220</td>
<td>1.354±0.176</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1.642±0.780</td>
<td>2.541±0.615</td>
<td>2.710±0.259</td>
<td>2.551±0.373</td>
</tr>
<tr>
<td>Kidney</td>
<td>1.555±0.506</td>
<td>1.623±0.218</td>
<td>2.066±0.339</td>
<td>1.780±0.255</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.661±0.179</td>
<td>0.709±0.076</td>
<td>0.947±0.255</td>
<td>0.858±0.196</td>
</tr>
<tr>
<td>Brain</td>
<td>0.103±0.038</td>
<td>0.451±0.794</td>
<td>0.142±0.015</td>
<td>0.108±0.048</td>
</tr>
<tr>
<td>Submandibular gland</td>
<td>1.876±1.262</td>
<td>1.685±0.821</td>
<td>2.892±0.347</td>
<td>2.694±0.435</td>
</tr>
<tr>
<td>Pancreas/Liver ratio</td>
<td>2.05</td>
<td>2.05</td>
<td>2.15</td>
<td>1.89</td>
</tr>
</tbody>
</table>

Each data obtained 20 min after injection
Fig. 1. Tissue distribution of 13N-glutamic acid in rats.

Fig. 2. Tissue distribution of 13N-glutamic acid in golden hamsters and rats compared 20 min. after injection.
Fig. 3-a. Pancreas image of miniature-pig-Gettingen with 13N-glutamic acid using positron emission computed tomography.

Fig. 3-b. X-ray computed tomography image of the same level and the same position of the miniature-pig-Gettingen.