III. 5 Syntheses of 18F-5-Fluorouracil, 18F-5-Fluorouridine and 18F-5-Fluoro-2'-deoxyuridine

Takahashi T., Ido T. and Ishiwata K.
Cyclotron and Radioisotope Center, Tohoku University

In our cyclotron, 18F-F_2 has been produced by the 20Ne(d,α)18F nuclear reaction. We have studied the syntheses of various 18F-radiopharmaceuticals by the use of 18F-F_2. 5-Fluorouracil (FU) is a useful pharmaceutical, which has been utilized as an anti-neoplastic agent for the treatment of a variety of disseminated solid tumor. We tried the 18F-labeling of FU and its relative compounds for the application of tumor scanning agents. The metabolic pathway of FU is shown in fig. 1. FU has been considered to be metabolated to 5-fluorouridine (FUR) or 5-fluoro-2'-deoxyuridine (FdUR), followed by their phosphate derivatives. It has been also considered that 5-fluorouridine-5'-diphosphate (FUDP) is incorporated in RNA, while 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP) acts as a blocking agent of thymidylate synthetase and thereby prevents the incorporation of deoxyuridine in DNA. In this way, not only FU but FUR and FdUR are expected to be useful for the antitumor pharmaceuticals. In these aspects, we selected the following three compounds (5-fluorouracil (FU), 5-fluorouridine (FUR) and 5-fluoro-2'-deoxyuridine (FdUR)) for the aimed 18F-labeling compounds and performed the comparative studies of their usefulness as radiopharmaceuticals for the tumor scanning by administrating them to mice bearing AHL09A tumor. In this paper, we report the syntheses of 18F-FU, 18F-FUR and 18F-FdUR and the differences of their behaviours in mice.

MATERIALS AND METHODS

The synthesis of 18F-FU has been reported by R. M. Lambrecht, C. Mantescu, J. S. Fowler et al. and the 18F-labeling of FUR has been performed by Chyng-Yann Shue, J. S. Fowler, R. R. MacGregor et al. We synthesized 18F-FU, 18F-FUR and 18F-FdUR with a few modifications.

Production of 18F-F_2 ; 18F-F_2 was produced from the deuteron bombardment of a neon-fluorine gas mixture (0.05 % fluorine in neon) by the 20Ne(d,α)18F nuclear reaction in a nickel target chamber at a pressure of 25 atm for 1 hr at a current of 10 μA.

Synthesis of 18F-5-Fluorouracil (18F-FU) ; The 18F-F_2 produced was purged through the target chamber (flow rate : 100 ml/min ; total time : 25-30 min) into the solution of 5 mg (45 umol) of uracil in 4 ml of trifluoroacetic acid at 0°C (ice water bath). The solvent was removed with a stream of nitrogen. The oily residue was sublimed under reduced pressure to give 18F-FU. 10-15 mCi of 18F-FU was obtained. The synthetic route and the synthetic method of 18F-FU are respectively shown in chart 1 and fig. 2.
Synthesis of 18F-5-Fluorouridine (18F-FUR) ; The 18F-F$_2$ produced was purged through the target chamber (flow rate : 100 ml/min ; total time : 25-30 min) into the solution of 6 mg (16 umol) of 2',3',5'-tri-O-acetyl-5,6-dihydro-5-fluoro-6-acetoxyuridine in 3 ml of glacial acetic acid in a reaction vessel at room temperature. The reaction mixture was then transferred to a round-bottom flask and evaporated in vacuo to give 18F-2',3',5'-tri-O-acetyl-5,6-dihydro-5-fluoro-6-acetoxyuridine. Its compound was dissolved in 1 ml of 28 % sodium methoxide - methanol solution and 2 ml of methanol and evaporated to dryness. The residue was dissolved in water for chromatographic separation of 18F-FUR. Chromatographic separation were obtained on cation exchange column (AG 50W, H$^+$ form), eluted with water. The eluate was evaporated in vacuo and the residue was extracted with ethyl acetate : acetone : water (V/V 70/40/5) and then passed through a silica gel column, followed by being passed through an alumina column, eluted with same solvent system. The eluate was evaporated in vacuo to give 5-10 mCi of 18F-FUR. The synthetic route and the synthetic method of 18F-FUR are respectively shown in chart 2 and fig. 3. Synthesis of 18F-5-Fluoro-2'-deoxyuridine (18F-FdUR) ; 18F-FdUR was synthesized in the same method as 18F-FUR. In the synthesis of 18F-FdUR, 6 mg (21 umol) of 3',5'-di-O-acetyl-2'-deoxyuridine was used as the starting material. 5-10 mCi of 18F-FdUR was obtained. The synthetic route and the synthetic method of 18F-FdUR are respectively shown in chart 2 and fig. 3. Radiochemical analysis of 18F-FU, 18F-FUR and 18F-FdUR ; The radiochemical purity of 18F-FU, 18F-FUR and 18F-FdUR was determined by HPLC (column : u-Bondapak C-18 ; eluent ; 10 mM(NH$_4$)$_2$HPO$_4$ aqueous solution ; flow rate : 2 ml/min). The radiochemical purity of 18F-FU, 18F-FUR and 18F-FdUR was found to be respectively >94 %, 90-95 % and 98 % (fig. 4).

RESULTS AND DISCUSSION

We improved the syntheses as follows ; (1) in the synthesis of 18F-FU, the temperature of the sublimation was maintained at 150°C during the first 10 min and finally was slowly raised to 180°C. (2) in the syntheses of 18F-FUR and 18F-FdUR, the step of passing through an alumina column was freshly added. By these modifications, the co-sublimation of impurity was prevented and 18F$^-$ was completely removed. 18F-FU, 18F-FUR and 18F-FdUR were obtained in high radiochemical purity.

In the additional reaction of uracil with 18F-F$_2$, only one 18F was seemed to add to uracil because the radioactivity was not reduced to one-half in the step of sublimation. In this case, the intermediate has been considered to be mono 18F and mono trifluoroacetoxo aduct of uracil (chart 1). In the cases of syntheses of 18F-FUR and 18F-FdUR, as well as that of 18F-FU, their intermediates have been also considered to be mono 18F adducts (chart 2, 18F-FUR : 18F-2',3',5'-tri-O-acetyl-5,6-dihydro-5-fluoro-6-acetoxyuridine ; 18F-FdUR : 18F-3',5'-di-O-acetyl-5,6-dihydro-5-fluoro-6-acetoxy-2'-deoxyuridine).
The time required for the synthesis of 18F-FU was 60 min and that of 18F-FUR and 18F-PdUR was 1.5-2 hr from the bubbling of 18F-F_2. We have developed the rapid syntheses of 18F-FU, 18F-FUR and 18F-PdUR in answer to the need for frequent production of them.

The distributions of 18F-FUR and 18F-PdUR were studied by β-ray scintigraphy (fig. 5). Consequently, it has become apparent that all three compounds were faintly uptaken in tumor (AH109A) and very highly in small intestine and the contents. 18F-FUR was also distributed in salivary glands and in whole body, while 18F-PdUR was only distributed in small intestine. These results show that 18F-PdUR is hopeful as a radiopharmaceutical for the tumor scanning except in small intestine.

References

7) private information.
Uracil in trifluoroacetic acid
\[^{18}F_2 \text{F}_2 \text{ was bubbled (ice water bath)} \]
reaction mixture
\[\rightarrow \text{N}_2 \text{ was flushed (solvent was removed)} \]
residue
\[\rightarrow \text{sublimation} \]
\[^{18}F-5-\text{Fluorouracil} \]

Fig. 2. Synthetic Method of \(^{18}F-5\)-Fluorouracil.
2',3',5'-tri-O-Acetyluridine
3',5'-di-O-Acetyl-2'-deoxyuridine
in glacial acetic acid

↑ ¹⁸F⁻F₂ dissolved (room temperature)
reaction mixture
↓ solvent was evaporated in vacuo
residue
↓ CH₃ONa - CH₃OH was added
reaction mixture
↓ solvent was evaporated at atmospheric pressure
residue
↓ H₂O was added
aqueous solution
cation exchange column (AG 50W, H⁺ form)
effluent
↓ solvent was evaporated in vacuo
residue
↓ CH₃COOC₂H₅:CH₃COCH₃:H₂O (V/V 70/40/5)
extract
↓ silica gel column
effluent
↓ solvent was evaporated in vacuo

¹⁸F⁻5-Fluorouridine
¹⁸F⁻5-Fluoro-2'-deoxyuridine

Fig. 3. Synthetic Method of ¹⁸F⁻5-Fluorouridine and ¹⁸F⁻5-Fluoro-2'-deoxyuridine.

![Activity Graphs](image)

¹⁸F⁻5-Fluorouracil
radiochemical purity > 94 %

¹⁸F⁻5-Fluorouridine
radiochemical purity 90-95 %

¹⁸F⁻5-Fluoro-2'-deoxyuridine
radiochemical purity 98 %

Analytical conditions
Column: u-Bondapak C-18
Eluent: 10 mM (NH₄)₂HPO₄
Flow rate: 2 ml / min.

Fig. 4. Analysis of ¹⁸F⁻5-Fluorouracil, ¹⁸F⁻5-Fluorouridine and ¹⁸F⁻5-Fluoro-2'-deoxyuridine.
Fig. 5. (A) Picture of section and (B) β-Ray scintigram of $^{18}_{\text{F}}$-5-Fluorouridine and $^{18}_{\text{F}}$-5-Fluoro-2′-deoxyuridine in mice bearing AH109A tumor at 60 min.
Chart 1. Synthesis of 18F-5-Fluorouracil.

Chart 2. Syntheses of 18F-5-Fluorouridine and 18F-5-Fluoro-2'-deoxyuridine.