III. 4 Syntheses of 18F-2-Fluoro-2-deoxyglucose and 18F-2-Fluoro-2-deoxymannose

Takahashi T., Ido T., and Iwata R.
Cyclotron and Radioisotope Center, Tohoku University

18F is an ideal positron-emitter for positron tomography since its energy is the lowest in a series of positron-emitters (11C, 13N, 15O etc.). Its relatively long half-life (109.8 min.) is also favorable for the syntheses of various 18F-radiopharmaceuticals. In the syntheses of 18F-radiopharmaceuticals, 18F-P_2 is one of the useful reagents because of its high reactivity.1 In particular, its additional reaction to various double bonds is simple and widely used. This method is expected to be used for the development of various 18F-radiopharmaceuticals. We tried the syntheses of 18F-2-fluoro-2-deoxyglucose (18F-FDG) and 18F-2-fluoro-2-deoxymannose (18F-FDM) by the use of above labeling method. 18F-FDG has been used as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissue2 and moreover used as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo.\(^3\) 18F-FDG is a more useful radiopharmaceutical in positron nuclear medicines and 18F-FDM, which is an isomer of 18F-FDG, has been also expected to be used for the same purpose as 18F-FDG. We synthesized 18F-FDG and 18F-FDM by the reaction of 3,4,6-tri-O-acetylglucal with 18F-P_2. In this present paper, we report the routine syntheses of 18F-FDG and 18F-FDM in high radiochemical purity by making a few modifications for better in the conventional method.4

MATERIALS AND METHODS

The synthetic steps of 18F-FDG and 18F-FDM are roughly divided into the following four main procedures: (i) production of 18F-P_2 (ii) reaction of 3,4,6-tri-O-acetylglucal with 18F-P_2 (iii) column chromatography and isolation of 18F-glucopyranosyl difluoride and 18F-mannopyranosyl difluoride (iv) hydrolysis of 18F-glucopyranosyl difluoride and 18F-mannopyranosyl difluoride and purification of 18F-FDG and 18F-FDM. The synthetic route and the synthetic method of 18F-FDG and 18F-FDM are respectively shown in chart 1 and fig. 2.

(i) Production of 18F-P_2; 18F-P_2 was produced from the deuteron bombardment of neon-fluorine gas mixture by the 20Ne(d,α)18F nuclear reaction. The external deuteron beam of our cyclotron was used to bombard neon gas containing 0.05 % fluorine at a pressure of 25 atm in a nickel target chamber for 2 hr at a current of 10 uA.

(ii) Reaction of 3,4,6-tri-O-acetylglucal with 18F-P_2; Before end of bombardment (EOB), a solution of 67 mg (250 umol) of 3,4,6-tri-O-acetylglucal in 10 ml of freon-11 (CFC$_3$) was introduced into the reaction vessel, which was immersed in a dry ice/methanol bath. After EOB, 18F-P_2 in neon was released from the target chamber at a controlled flow rate and bubbled through the glucal solution at
approximately 200 ml/min. After 30 min, neon was added to the target chamber at a pressure of 3 atm as a purge and bubbling was continued for 5 min.

(iii) Column chromatography and isolation of 18F-glucopyranosyl difluoride and 18F-mannopyranosyl difluoride; The cooled solution of reaction products, which consisted of 3,4,6-tri-O-acetyl-2-fluoro-2-deoxy-α-D-glucopyranosyl fluoride and 3,4,6-tri-O-acetyl-2-fluoro-2-deoxy-β-D-mannopyranosyl fluoride, was transferred to a glass collection vessel. The reaction vessel was rinsed with 5 ml of n-hexane and 5 ml of fresh CFCl$_3$, which were also transferred to the collection vessel, and the combined solution was transferred to the top of a silica gel column, 0.9 cm i.d. x 10 cm, previously equilibrated with n-hexane. After eluting the silica gel column with 50 ml of n-hexane, the solvent was exchanged for diethyl ether : n-hexane (1:1). 18F-Glucopyranosyl difluoride was eluted with 20-30 ml of diethyl ether : n-hexane (1:1) (fr.10-fr.15, each fraction : ca. 2 ml) and 18F-mannopyranosyl difluoride with 70-90 ml (fr.35-fr.45). The solvent of each collected fraction was evaporated in vacuo.

(iv) Hydrolysis of 18F-glucopyranosyl difluoride and 18F-mannopyranosyl difluoride and purification of 18F-FDG and 18F-FDM; The solvent-free residue containing the 18F-glucopyranosyl difluoride was suspended in 5 ml of 1N-HCl and refluxed for 15 min (oil-bath temperature : 135°C). The products of hydrolysis were transferred to the top of a series of columns, which had been packed with 0.9 cm i.d. x 1 cm of activated charcoal, 0.9 cm i.d. x 10 cm of AG11A8 resin and 0.9 cm i.d. x 5 cm of neutral alumina, previously equilibrated with water. 18F-FDG was eluted with 5-20 ml of water (fr.2-fr.4, each fraction : ca. 5 ml). From the collected fractions, water was evaporated in vacuo. 15-20 mCi of 18F-FDG was obtained. 18F-FDM was synthesized in the same method as 18F-FDG. The solvent-free residue containing the 18F-mannopyranosyl difluoride was suspended in 5 ml of 5N-HCl and refluxed for 15 min (135°C). The products of hydrolysis were transferred to the top of a series of columns, 0.9 cm i.d. x 1 cm of activated charcoal, 0.9 cm i.d. x 20 cm of AG11A8 resin and 0.9 cm i.d. x 5 cm of neutral alumina. 18F-FDM was eluted with 10-25 ml of water (fr.3-fr.5). Water was evaporated in vacuo. 5-7 mCi of 18F-FDM was obtained.

Radiochemical analysis of 18F-FDG and 18F-FDM; The radiochemical purity of 18F-FDG and 18F-FDM was determined by HPLC (column : μ-Bondapak C-18 (carbohydrate); eluent : CH$_3$CN/H$_2$O (85/15); flow rate : 2ml/min). HPLC radiochromatogram of 18F-FDG is shown in fig. 2. The radiochemical purity of 18F-FDG was found to be >98 % and that of 18F-FDM 99 % (Table 1).

RESULTS AND DISCUSSION

Compared with the conventional method, we improved the syntheses as follows:

(1) a large excess of the starting material was used to prevent the overoxidation of products by F$_2$. (2) 18F-glucopyranosyl difluoride and 18F-mannopyranosyl difluoride were purely separated in silica gel column before their hydrolysis.
(3) before eluting a silica gel column with diethyl ether : n-hexane (1:1), 50 ml of n-hexane was eluted to remove the unreactive starting material. By these modifications, we succeeded in obtaining 18F-FDG and 18F-FDM in high radiochemical purity (18F-FDG : >98 %, 18F-FDM : 99 %). By administering 18F-FDG and 18F-FDM to rats bearing AH109A tumor, they have been demonstrated to be mainly accumulated in brain, heart and tumor. Now, the need for frequent production of 18F-FDG made necessary the development of automated synthesis system for its processing. We have already developed the automated synthesis system of (i)-(iii) steps.

References

<table>
<thead>
<tr>
<th>18F-FDG</th>
<th>18F-FDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>radiochemical</td>
<td>radiochemical</td>
</tr>
<tr>
<td>yield (%)</td>
<td>purity (%)</td>
</tr>
<tr>
<td>1. 14</td>
<td>99</td>
</tr>
<tr>
<td>2. 10</td>
<td>96</td>
</tr>
<tr>
<td>3. 7</td>
<td>99</td>
</tr>
<tr>
<td>4. 12</td>
<td>99</td>
</tr>
<tr>
<td>5. 8</td>
<td>99</td>
</tr>
<tr>
<td>6. 10</td>
<td>98</td>
</tr>
<tr>
<td>7. 7</td>
<td>99</td>
</tr>
<tr>
<td>8. 16</td>
<td>98</td>
</tr>
<tr>
<td>yield (%)</td>
<td>purity (%)</td>
</tr>
<tr>
<td>1. 1.5</td>
<td>99</td>
</tr>
<tr>
<td>2. 2.5</td>
<td>99</td>
</tr>
<tr>
<td>3. 3.0</td>
<td>99</td>
</tr>
</tbody>
</table>
3,4,6-tri-O-Acetylglucal in CFCl₃

18F-F₂ was bubbled (dry ice - methanol)

reaction mixture

silica gel column
(n-hexane:ether=1:1)

effluent (first)

solvent was evaporated in vacuo

residue

hydrolysis (1N-HCl)

reaction mixture

active charcoal column

ion exchange column (AG11A8)

18F-PDG

Fig. 1. Synthetic Method of 18F-2-Fluoro-2-deoxyglucose and 18F-2-Fluoro-2-deoxymannose.

18F-PDM

effluent (secondly)

solvent was evaporated in vacuo

residue

hydrolysis (5N-HCl)

reaction mixture

active charcoal column

ion exchange column (AG11A8)

alumina column

Fig. 2. Radiochemical Analysis of 18F-2-Fluoro-2-deoxyglucose.
Chart 1 Syntheses of 18F-2-Fluoro-2-deoxyglucose and 18F-2-Fluoro-2-deoxymannose.