VI. 5 Excitation Functions for 3He-induced Reactions on Silver

Omori T., Yagi M.*, Yamazaki H. and Shiokawa T.
Department of Chemistry, Faculty of Science, Tohoku University
Laboratory of Nuclear Science, Tohoku University*

Indium-111 which decays by electron capture ($T_{1/2} = 2.83$ d) has several advantages for in vivo applications. The gamma-ray energies, 171 and 245 keV, are in optimum range of detectable energy for commercially available detecting devices. The cross sections for the 109Ag$(a,2n)^{111}$In$^{1-3}$, 111Cd$(p,n)^{111}$In4 and 110Cd$(d,n)^{111}$In5 have been measured in detail as a function of energy of bombarding particle. However, those for the reactions of silver with 3He have not yet determined completely.

In order to elucidate the reactions of silver with 3He, in the present study, the excitation functions for the 109Ag$(^3$He,$3n)^{109}$In plus 107Ag$(^3$He,$n)^{109}$In, 109Ag$(^3$He,$2n)^{110}$In and 109Ag$(^3$He,$n)^{111}$In reactions as well as for the 107Ag$(^3$He,$\alpha)^{105}$Ag and 107Ag$(^3$He,$\alpha)^{106m}$Ag plus 109Ag$(^3$He,$\alpha 2n)^{106m}$Ag reactions have been determined by bombarding doubly ionized 3He particles on natural silver targets. Further, the thick target yields for the 109In, 110In and 111In were calculated on the basis of the excitation functions.

EXPERIMENTAL

The cross-sections were experimentally determined by means of the activation method. Stacks of natural silver foils were exposed to external 3He$^{2+}$ beam generated from an AVF cyclotron at the Cyclotron and Radioisotope Center, Tohoku University. The silver foils weighed out accurately were placed between aluminium foils of known thickness. The 3He$^{2+}$ energy at the midpoint of each target thickness was calculated from range-energy tables.

After bombardment, the stack was allowed to stand for about 10 h in order to eliminate short half-life radioactivities. The γ-ray spectrum of each foil was measured with a Ge(Li) detector connected to a TN-4000 data processing system. Radioactivity measurements were carried out at time intervals suitable for radionuclide identification. The number of counts in the relevant photopeak area was corrected by means of the counting efficiency of the detector and the γ-ray branching ratio. The counting efficiencies were determined with a 152Eu standard source, and the γ-ray branching ratios were taken from the decay scheme data.

Losses of the radioisotopes into the aluminium foil due to recoil were examined in a similar manner as above. The overall error for the cross-section was estimated to be less than 8 %. It is mainly due to errors in the counting statistics, detector efficiencies, decay scheme data, and thickness and area of the foil.
RESULTS AND DISCUSSION

The γ-ray spectrum of each silver foil was very complicated even after the radioisotopes with half-lives of less than an hour had already decayed. Hence, the following γ-ray photopeaks were chosen in order to determine accurately the absolute production yields of 109In, 110In, 111In, 105Ag and 106mAg; 203 keV for 109In, 885 and 937 keV for 110In, 171 and 245 keV for 111In, 280 and 345 keV for 105Ag, and 1046 keV for 106mAg.

The excitation function curves for the 109Ag(3He,3n)109In plus 107Ag(3He, n)109In, 105Ag(3He,2n)110In and 109Ag(3He,n)111In reactions are shown in Fig. 1 together with those for the 107Ag(3He,n)105Ag, and 107Ag(3He,α)106mAg plus 109Ag(3He,α2n)106mAg reaction. The cross-sections for the 107Ag(3He, n)109In and 107Ag(3He,α)106mAg reactions, especially in the lower energy region, contribute to those for the 109Ag(3He,3n)109In and 109Ag(3He,α2n)106mAg reactions, respectively.

The thick target yields of 109In, 110In and 111In were obtained by integration of the corresponding yield curves. The yield of 111In is found to be 1.7 μCi/μA·h by irradiating 40 MeV 3He$^2^+$, while those of 109In and 110In are 240 and 2800 μCi/μA·h, respectively.

We wish to express our thanks to Profs. S. Morita, M. Fujioka and the cyclotron crew for their kind arrangements for bombardment.

References

Fig. 1. The excitation functions for the Ag + ^3He reactions.

- $^{109}\text{Ag}(^3\text{He}, 3n)^{109}\text{In} + ^{107}\text{Ag}(^3\text{He}, n)^{109}\text{In}$
- $^{109}\text{Ag}(^3\text{He}, 2n)^{110}\text{In}$
- $^{109}\text{Ag}(^3\text{He}, n)^{111}\text{In}$
- $^{107}\text{Ag}(^3\text{He}, n)^{105}\text{Ag}$
- $^{107}\text{Ag}(^3\text{He}, n)^{106m}\text{Ag} + ^{109}\text{Ag}(^3\text{He}, 2n)^{106m}\text{Ag}$